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Resum: Hi ha un ampli ventall de sistemes coneguts com a lògica borrosa que s’utilitzen per
basar inferències que inclouen vaguetat. Aquests sistemes operen sobretot en dos camps: el de
les aplicacions tecnològiques i el lògic. A conseqüència d’aquesta dualitat l’expressió ‘lògica
borrosa’ admet diversos significats i el seu ús esdevé confús.
El sentit original va ser introduït per L.A. Zadeh (1975) per denotar una nova família de sis-
temes lògics a fi d’adaptar-se al raonament humà tant com fos possible. Entre les opcions dis-
ponibles, la proposada per Zadeh representa l’atac més radical contra la lògica estàndard en
considerar que veritable i fals són ells mateixos predicats borrosos. Malgrat la seva importàn-
cia, el primer significat de lògica borrosa està en desús entre els practicants dels mètodes bor-
rosos.

El treball té per objecte avaluar la importància i validesa de la lògica creada per Zadeh.
Després de situar aquesta lògica dins el context lògic, resumeixo els diversos significats de
l’expressió lògica borrosa; tot seguit recordo els trets principals de la proposta de Zadeh i dis-
cuteixo la seva validesa per a tots els propòsits pràctics; finalment, presento una avaluació me-
talògica del fons implicat en tal proposta.

PARAULES CLAU: lògica borrosa, vaguetat, coneixement aproximat, raonament aproximat,
principi de bivalència, incertesa, coneixement imperfecte.

1. INTRODUCTION

Aristotle is commonly considered to have been the first scholar to present an ex-
position on logic. His treatises on this subject were collectively called Organon, a Greek-
derived word meaning “tool”. Therefore, logic is, in its original and widest meaning,
a tool to guarantee the coherence of “reasoning”, that is to say, of “an argument in
which, certain things being laid down, something other than these necessarily comes
about through them” (Topics, I, 1).

* This paper is an updated version of the previous one (2002).



Traditionally, the only organon used to discriminate “valid” arguments from
those that are not has been classic logic. Nowadays, uncertainty involving subjects
such as the future, the infinite, non-sense or vagueness caused alternative logical sys-
tems to spread.

With regard to vagueness, some years ago I reviewed (1995) the set of logical al-
ternatives. Depending on whether the principle of bivalence (every statement is ei-
ther true or false) is accepted or rejected, these alternatives can be classified in two
main groups. The first one follows the criterion of precision: informal arguments of
ordinary languages must be purified to make their treatment within standard logic
possible. The second one follows the criterion of adaptation: standard logic must be
modified to such an extent that it can operate with vagueness with no need for this
logic to change.

The logical systems that belong to the second group are generically known as
fuzzy logics. Nevertheless, in spite of this common denomination, two subgroups
have to be distinguished, which are called the super-valued and the fuzzy approaches,
respectively. The former, which includes multivalued logics, introduces new truth-
values to solve the problems caused in the determination of truth or falsity in doubt-
ful cases. The latter proposes more radical changes in adapting logic to ordinary lan-
guage, for instance, to deal with approximate reasoning using fuzzy linguistic
truth-values instead of the truth-value set of a multivalued-logic.

In this paper, I am concerned with this last approach, the leading exponent of
which is Lotfi A. Zadeh. It was he who introduced the original sense of fuzzy logic
in 1975 to denote a family of new logical systems which aim to adapt to human rea-
soning as far as possible. Among the several options available to us for approximate
reasoning with ordinary languages, Zadeh’s represents the most radical attack against
standard logic, in considering that true and false are themselves fuzzy predicates. In
spite of its significance, the early sense of fuzzy logic is no longer in use, although not
unknown, among practitioners of fuzzy methods.

2. THE AMBIGUITY OF THE TERM ‘FUZZY LOGIC’

There is a wide range of systems, commonly known as fuzzy logic, which are used
to base inferences that include vagueness on. These systems, which are utilised with-
in the framework of the fuzzy thinking paradigm, operate in two main fields: tech-
nological applications and logic. As a result of this duality, the term fuzzy logic allows
several meanings which give rise to confusing use.

The denomination of fuzzy logic has always been ambiguous and can be mislead-
ing. As long ago as 1976, B.R. Gaines pointed out three potential meanings: (i) as a
basis for reasoning with vague statements, (ii) as a basis for reasoning with vague state-
ments using fuzzy sets theory for the fuzzyfication of logical structures, (iii) as a mul-
tivalued logic in which truth-values belong to the interval [0,1] and the min and max
rules of Lukasiewicz’s logic are applied.
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This distinction was made before the remarkable success reached by the new
fuzzy technologies, whose activities are usually regarded as forming the core of fuzzy
logic. Zadeh himself (1994) stated:

The term fuzzy logic is actually used in two different senses. In a narrow sense,
fuzzy logic is a logical system which is an extension of multivalued logic and is in-
tended to serve as a logic of approximate reasoning. But in a wider sense, fuzzy lo-
gic is more or less synonymous with the theory of fuzzy sets [...] what is important
to recognise is that today the term fuzzy logic is used predominantly in its
wider sense.

And S. Haack (1996, p. 232), for her part, has asserted:

The term ‘fuzzy logic’ seems to be used, in literature, to refer to two related,
but distinct, enterprises: (I) the interpretation of familiar infinitely many-valued
logics in terms of fuzzy set theory, and (II) the development, on the basis (I), of a
family of new logical systems in which the truth-values are themselves fuzzy sets.

So, at least four meanings of fuzzy logic can be distinguished: (α) as a basis for
reasoning with vague statements or terms; (β) as technological reasoning with vague
terms using the mathematical theory of fuzzy sets; (γ) as a certain kind of multi-
valued logic; (δ) as a multivalued logic in which truth-values are interpreted in terms
of fuzzy set theory; (ε) the narrow sense quoted by Zadeh and Haack (II).1 Here I will
reserve the term fuzzy logic for (ε), henceforth FL.

3. ZADEH’S PROPOSAL. FORMAL COMMENTS

The divergence of FL with regard to classic logic is much more radical than any
other logical system. I consider Zadeh’s proposal to be the boldest attempt ever made
to construct a logic that is able to make inferences of ordinary reasoning within or-
dinary languages. In (1975), Zadeh summarised what FL consists of:

Perhaps the simplest way of characterising fuzzy logic is to say that it is a logic
of approximate reasoning. As such, it is a logic whose distinguishing features are
(i) fuzzy truth-values expressed in linguistic terms, e. g., true, very true, more or less
true, rather true, not true, false, not very true and not very false, etc.; (ii) imprecise
truth tables; and (iii) rules of inference whose validity is approximate rather than
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1. In (1993), B. Kosko included a reference to fuzzy logic within the glossary included in the work and
distinguished two meanings, more or less corresponding to (β) and (δ) respectively. Some years later, in
(1999) Kosko seems to appeal to (α) when he laconically defines fuzzy logic as consisting of reasoning by
means of fuzzy concepts, although it falls into the category of (β) when he states that fuzzy logic is a branch
of Artificial Intelligence. It should be emphasised that, strictly speaking, (α) and (β) do not correspond to
the field of logic. Altogether, this gives us an idea of this ambiguity.



exact. In these respects, fuzzy logic differs significantly from standard logical sys-
tems ranging from the classical Aristotelian logic to inductive logics and
many-valued logic with set-valued truth-values.

To construct an FL, a multivalued logic that verifies min and max rules for con-
junction and disjunction respectively is needed. This gives rise to a family of FL, each
one with its own base logic. The logic used by Zadeh is Lukasiewicz’s indenumerably
many-valued logic (Aleph1), which takes its truth-values from the real unit interval
[0,1].

The truth-values set of FL is not [0,1] but a denumerably set of fuzzy sets identi-
fied by means of linguistic labels like true, very true, etc. These truth-values are ob-
tained by two kinds of rules, syntactic and semantic, respectively. The syntactic rule
allows us to generate the linguistic truth-values set of FL, say T = {true, false, not true,
very true, very (very true), not very true, not true and not false, true and (not false or
not true),...}. The semantic rule is an algorithmic procedure to compute the meaning
of the elements of T, which are fuzzy (sub)sets of [0,1]. T includes one (or more) pri-
mary terms, true for instance, whose meaning has to be specified beforehand and ser-
ves as a basis to determine the meaning of the rest of the elements of T.

For example, let T be the truth-values set of the basic logic and let μτ be a fuzzy
membership function μτ: T → [0,1]. The meaning of true can be expressed as τ =
∫μτ(t)/t, where the symbol ∫ denotes the union of the single fuzzy sets {μτ(t)/t} and
μτ(t)/t means that the degree of membership of t ∈ T in the labelled fuzzy set is μτ(t).
So, if τ = {μτ(T)/T} = {<0/0>, ..., <0/0.5>, <0.3/0.6>, <0.5/0.7>, <0.7/0.8>, <0.9/0.9>,
<1/1>},2 it can be seen that true = 0.3/0.6 + 0.5/0.7 + 0.7/0.8 + 0.9/0.9 + 1/1. The
meaning of the remaining linguistic values of T is obtained from the prefixed one;
thus, very true = (true)2 = 0.09/0.6 + 0.25/0.7 + 0.49/0.8 + 0.81/0.9 + 1/1.

Once T has been determined, the next step is to operate with its elements, in
other words extend the definitions of the connectives of the base logic to FL. This is
achieved by applying the extension principle for fuzzy sets. The result obtained is a
fuzzy truth-value which, in most cases, will have to be submitted to linguistic ap-
proximation, which is not unique, to fit it to the T-values.

Moreover, the meaning of the statements, connectives and truth-values is varia-
ble, not fixed, or, what amounts to the same thing, the meaning is of local validity,
rather than universal. This is the reason why FL can be viewed as a local logic. Hence,
the inference process has a semantic character rather than a syntactic one: in FL, the
conclusion depends on the meaning assigned to the fuzzy sets that appear in the set
of premises, e.g., the conclusion derived from the two premises P1: ‘John is young’
and P2: ‘John and Peter are of roughly the same age’ depends on the meaning of
‘young’ and ‘of roughly the same age’, both expressions being represented by means
of fuzzy sets of R and R², respectively. Let us suppose that we conclude P3: ‘Peter is
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more or less young’. We could ask for the “truth” of both premises and the conclu-
sion and to estimate that P1 is very true, P2 is rather true and then, applying the meth-
ods of approximate reasoning, we could conclude that P3 is true. Therefore, the infer-
ence is imprecise, which is the essential characteristic of ordinary reasoning to which
FL tries to adapt.

Consequently, FL is the result of a double weakening of the prior assumptions of
standard classic logic. Firstly, because of the rejection of the principle of bivalence
and the law of excluded middle, which gives rise to a multivalued logic and, closely
related to it, to a membership function that allows us to interpret the predicates.
Secondly, because of the variability of the meaning assigned both to the truth-values
and the connectives, which makes the logical inference itself imprecise.

4. A COMPARATIVE ASSESSMENT OF FUZZY LOGIC

As we saw in the previous section, dealing with linguistic labels is the same as
doing so with fuzzy sets of the unit interval [0,1] ∈ R, while Lukasiewicz’s (Aleph1)
logic deals with the real number of [0,1]. Apparently, the new method offers an er-
roneous way because of its greater complexity. Zadeh (1975) gives two reasons to jus-
tify this preference for the use of linguistic truth-values instead of numerical ones.

First, the truth-value set of Aleph1 is a continuum, whereas that of fuzzy logic
(FL) is a countable set. More importantly, in most applications to approximate rea-
soning, a small finite subset of the truth-values of FL would, in general, be suf-
ficient because each truth-value of FL represents a fuzzy subset rather than a sin-
gle element of [0,1]. Thus, we gain by trading the large number of simple truth-va-
lues of Aleph1 for the small number of less simple truth-values of FL.

Hitherto, this justification has only alluded to the advantages encountered when
operating with both a numerable set and a few, albeit complex, truth-values, as op-
posed to operating with an indenumerable set including simpler values. Thus, the ar-
gument is not conclusive, since it could be answered that one might have a set with a
few truth-values without leaving the framework of a basic multivalued logic. The
second reason adduced by Zadeh is more substantial:

[...] approximate reasoning deals, for the most part, with propositions which
are fuzzy rather than precise, e.g., “Vera is highly intelligent”, “Douglas is very in-
ventive”, “Berkeley is close to San Francisco”, “It is very likely that Jean Paul will suc-
ceed”, etc. Clearly, the fuzzy truth-values of FL are more commensurate with the
fuzziness of such propositions than the numerical truth-values of multivalued logic.

Nevertheless, it is not clear that resorting to commensurability gives us any
weighty justification for linguistic truth-values. Why should we consider a fuzzy
valuation as ‘rather true’ to be more adequate than a numerical one of ‘0.7’?
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Actually we could argue quite the opposite in accordance with the following two
remarks. Firstly, precisely because of vagueness we should be careful not to produce
new cases of lack of precision; secondly, within a hendeca-valued logic we can asso-
ciate the numerical value ‘0.7’ to the ‘rather true’ linguistic fuzzy value without in-
troducing so much complexity.

Therefore, the reasons adduced by Zadeh are not strong enough to adopt FL. If
we add that in FL inferences are themselves imprecise, and hence there is no place for
the truth-functionality which holds in multivalued logic, it is not surprising that FL
has not been taken into account even among the staunchest upholders of the fuzzy
paradigm such as B. Kosko. As an alternative both to standard and multivalued logic,
Zadeh’s attempt is, to all intents and purposes, a failed attempt.

5. METALOGICAL COMMENTS ON FUZZY LOGIC

In spite of the previous conclusion, we have to pay special attention to the back-
ground implied in Zadeh’s proposal. This background is related to the concern,
shared by logicians and linguisticians alike, to offer a semantic system which is sui-
table for all concepts of ordinary languages.

This concern is closely connected with two metalogical questions, relating to the
conception of truth and the nature of logic, respectively. In other words, Zadeh of-
fers us a radical answer to F.C.S. Schiller’s claim (1912, p. 8):

Formal logic is [...] incapacitated by its self-imposed limitation from dealing
with the problems of actual thinking and from rationally interpreting the concep-
tion of truth implied in such thinking... We need, in short, a second Logic which
will be applicable to life and relevant to actual thought.

J. Balmes would thus seem to agree with such a claim (1845, c.22, §60):

Hay verdades de muchas clases porque hay realidad de muchas clases; hay
también muchos modos de conocer la verdad. No todas las cosas se han de mirar
de la misma manera, sino del modo que cada una de ellas se ve mejor. Al hombre
le han sido dadas muchas facultades. Ninguna es inútil. Ninguna es intrínseca-
mente mala. La esterilidad o malicia les vienen de nosotros, que las empleamos
mal. Una buena lógica debiera comprender al hombre entero; porque la verdad
está en relación con todas las facultades del hombre. Cuidar de la una y no de la
otra es a veces esterilizar la segunda y malograr la primera.

In (2004) I conjectured that J. Balmes, who has been placed in the same school of
thought as the pragmatism of Charles S. Peirce and William James, free of the natu-
ral obstacles imposed by the social and intellectual context of his times, would never
resigned himself to being swayed by an extremely rigid logic. No matter how we look
at it, it is really difficult to accept a logic that allows the validity of the paradoxical
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material implication. Moreover, if statements are compelled by the principle of biva-
lence to be either true or false, or they are at least allowed, as an exception to the rule,
to have no truth-value because they are nonsense or for any other reason, what can
we say about statements with vague terms, e.g. ‘John is tall’? To determine its truth or
falsity we should state the exact limit from which we can decide if a person is or not
tall; but this limit, on the one hand, will depend on the context, since it will be dif-
ferent for the Batusi and for Pygmies, and, on the other hand, it involves the measu-
rement problems of borderline cases.

Therefore, a numerical value belonging to [0,1] will be assigned to the statement
‘John is tall’ according to its degree of membership to the fuzzy set made up for the
extension of the predicate “tall”, i.e. of the “more or less” tall individuals. This
corresponds to the first level of FL.

The technical term hedge is used to refer to the elements of this fuzzy set. This
term was introduced into semantics by G. Lakoff (1972) to denote a modifier of
vague predicates. A few examples of “hedges” are: very, more or less, mutatis mutan-
dis, essentially, strictly speaking, etc. Lakoff proposed that fuzzy sets theory should
be applied to define them by considering that the generation of vague statements
through mathematical calculations is thus allowed. Thus, we could consider that the
statement ‘John is rather tall’ is “true” to a degree of 0’9 because <0’9/John> belongs
to the fuzzy set of the rather tall persons, while ‘John is very (very tall)’ would be con-
sidered “true” to a degree of 0’2 if <0’2/John> belongs to the set of the persons that
are very tall.

Therefore, what Zadeh proposes is to include true in the same category as tall so
that it can also be modified by semantic hedges that label the corresponding fuzzy
sets. The question is whether this inclusion is pertinent or not.

This question can be posed in the following way: is truth a quantitative character,
to wit, are its modalities capable of increasing and decreasing the same as height, col-
our, weight, intelligence, goodness, etc.? It is the difficulty to express the modalities
of some quantitative characters such as colour, flavour, etc. with precision that lies at
the origin of modalities that admit degrees such as tall, white, red, sweet, bitter, etc.,
which give rise to secondary characters such as height, whiteness, redness, sweetness,
bitterness, etc. The modalities of these secondary characters are determined by
hedges. Is truth one of them, namely, merely the abstraction of true? Does truth allow
degrees?

S. Haack (1996) opines that the behaviour of the modifiers ‘rather’ and ‘very’ with
‘true’, far from supporting the hypothesis that true is a predicate of degree, suggests
that it is an absolute predicate. In other writings I have also stated that truth is a cat-
egorical predicate which does not admit modification. In that sense I have argued
(1995, 1997) that ‘... is true’ does not correspond to the paradigm of ‘... is tall’, but to
the ‘... is identical’, or ‘... has hit the mark’, so, strictly speaking, just as an object can-
not be more or less identical, neither do we hit the mark more or less, and neither
is a statement more or less true. From this, I have concluded that “rather tall” does
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not exclude “tall”, “rather true” does exclude “true”: at most, a statement labelled as
“rather true” can be near the truth and be accepted as founding approximate knowl-
edge, but in actual fact such a statement remains absolutely false.

Now, however, I am not so categorical with regard to this question since I am
fully aware of the complexity of the issues involved, such as the problem of truth, the
nature of reality and the significance of vagueness in the real world.

In any case, regardless of whether de jure truth and falsity are a matter of degree
or not, de facto there is no doubt that within the scope of human reasoning they are
generally and practically accepted to be vague concepts. Therefore, the pertinent
questions are: is a Logic such as the one called for by Schiller, a Logic which will be
applicable to life and relevant to actual thought, needed?, and does a Logic that does
not depend on technology have any use in today’s world?

6. CONCLUSION

The term fuzzy logic is ambiguous. Today, it generically denotes a form of rea-
soning by means of fuzzy concepts, but in a narrow meaning it represents an un-
successful attempt to offer a logic suitable for approximate reasoning with ordinary
languages.

Because of the different significance that researchers have attached to fuzzy logic,
its meaning has been misunderstood and it has been confused with both multivalued
logic and technological reasoning in a context of vague knowledge. In this paper I
have pointed out this fact and have briefly explained the main features of the fuzzy
logic proposed by L.A. Zadeh. After arguing about the availability of such a logic as a
tool for approximated reasoning, two questions remain open: whether there are de-
grees of truth or not, and whether a logic applicable to life is needed. In any case, Za-
deh’s fuzzy logic has to be regarded as a renewed, albeit failed, attempt of a difficult
joint venture which, in my view, deserves to be successful in order to answer both
Schiller’s and Balmes’ claims.
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